Towards Shape-Based Knee Osteoarthritis Classification Using Graph Convolutional Networks

This video program is a part of the Premium package:

Towards Shape-Based Knee Osteoarthritis Classification Using Graph Convolutional Networks


  • IEEE MemberUS $11.00
  • Society MemberUS $0.00
  • IEEE Student MemberUS $11.00
  • Non-IEEE MemberUS $15.00
Purchase

Towards Shape-Based Knee Osteoarthritis Classification Using Graph Convolutional Networks

0 views
  • Share
Create Account or Sign In to post comments
We present a transductive learning approach for morphometric osteophyte grading based on geometric deep learning. We formulate the grading task as semi-supervised node classification problem on a graph embedded in shape space. To account for the high-dimensionality and non-Euclidean structure of shape space we employ a combination of an intrinsic dimension reduction together with a graph convolutional neural network. We demonstrate the performance of our derived classifier in comparisons to an alternative extrinsic approach.
We present a transductive learning approach for morphometric osteophyte grading based on geometric deep learning. We formulate the grading task as semi-supervised node classification problem on a graph embedded in shape space. To account for the high-dimensionality and non-Euclidean structure of shape space we employ a combination of an intrinsic dimension reduction together with a graph convolutional neural network. We demonstrate the performance of our derived classifier in comparisons to an alternative extrinsic approach.