A Myocardial T1-Mapping Framework with Recurrent and U-Net Convolutional Neural Networks

Noise and aliasing artifacts arise in various accelerated cardiac magnetic resonance (CMR) imaging applications. In accelerated myocardial T1-mapping, the traditional three-parameter based nonlinear regression may not provide accurate estimates due to sensitivity to noise. A deep neural network-based framework is proposed to address this issue. The DeepT1 framework consists of recurrent and U-net convolution networks to produce a single output map from the noisy and incomplete measurements. The results show that DeepT1 provides noise-robust estimates compared to the traditional pixel-wise three parameter fitting.
  • IEEE MemberUS $11.00
  • Society MemberUS $0.00
  • IEEE Student MemberUS $11.00
  • Non-IEEE MemberUS $15.00
Purchase

Videos in this product

A Myocardial T1-Mapping Framework with Recurrent and U-Net Convolutional Neural Networks

00:15:39
0 views
Noise and aliasing artifacts arise in various accelerated cardiac magnetic resonance (CMR) imaging applications. In accelerated myocardial T1-mapping, the traditional three-parameter based nonlinear regression may not provide accurate estimates due to sensitivity to noise. A deep neural network-based framework is proposed to address this issue. The DeepT1 framework consists of recurrent and U-net convolution networks to produce a single output map from the noisy and incomplete measurements. The results show that DeepT1 provides noise-robust estimates compared to the traditional pixel-wise three parameter fitting.