Age-Conditioned Synthesis of Pediatric Computed Tomography with Auxiliary Classifier Generative Adversarial Networks

Deep learning is a popular and powerful tool in computed tomography (CT) image processing such as organ segmentation, but its requirement of large training datasets remains a challenge. Even though there is a large anatomical variability for children during their growth, the training datasets for pediatric CT scans are especially hard to obtain due to risks of radiation to children. In this paper, we propose a method to conditionally synthesize realistic pediatric CT images using a new auxiliary classifier generative adversarial networks (ACGANs) architecture by taking account into age information. The proposed network generated age-conditioned high-resolution CT images to enrich pediatric training datasets.
  • IEEE MemberUS $11.00
  • Society MemberUS $0.00
  • IEEE Student MemberUS $11.00
  • Non-IEEE MemberUS $15.00
Purchase

Videos in this product

Age-Conditioned Synthesis of Pediatric Computed Tomography with Auxiliary Classifier Generative Adversarial Networks

00:13:04
0 views
Deep learning is a popular and powerful tool in computed tomography (CT) image processing such as organ segmentation, but its requirement of large training datasets remains a challenge. Even though there is a large anatomical variability for children during their growth, the training datasets for pediatric CT scans are especially hard to obtain due to risks of radiation to children. In this paper, we propose a method to conditionally synthesize realistic pediatric CT images using a new auxiliary classifier generative adversarial networks (ACGANs) architecture by taking account into age information. The proposed network generated age-conditioned high-resolution CT images to enrich pediatric training datasets.