Segmentation and Uncertainty Measures of Cardiac Tissues on Optical Coherence Tomography Via Convolutional Neural Networks

Segmentation of human cardiac tissue has a great potential to provide critical clinical guidance for Radiofrequency Ablation (RFA). Uncertainty in cardiac tissue segmentation is high because of the ambiguity of the subtle boundary and intra-/inter-physician variations. In this paper, we proposed a deep learning framework for Optical Coherence Tomography (OCT) cardiac segmentation with uncertainty measurement. Our proposed method employs additional dropout layers to assess the uncertainty of pixel-wise label prediction. In addition, we improve the segmentation performance by using focal loss to put more weights on mis-classified examples. Experimental results show that our method achieves high accuracy on pixel-wise label prediction. The feasibility of our method for uncertainty measurement is also demonstrated with excellent correspondence between uncertain regions within OCT images and heterogeneous regions within corresponding histology images.
  • IEEE MemberUS $11.00
  • Society MemberUS $0.00
  • IEEE Student MemberUS $11.00
  • Non-IEEE MemberUS $15.00
Purchase

Videos in this product

Segmentation and Uncertainty Measures of Cardiac Tissues on Optical Coherence Tomography Via Convolutional Neural Networks

00:14:04
0 views
Segmentation of human cardiac tissue has a great potential to provide critical clinical guidance for Radiofrequency Ablation (RFA). Uncertainty in cardiac tissue segmentation is high because of the ambiguity of the subtle boundary and intra-/inter-physician variations. In this paper, we proposed a deep learning framework for Optical Coherence Tomography (OCT) cardiac segmentation with uncertainty measurement. Our proposed method employs additional dropout layers to assess the uncertainty of pixel-wise label prediction. In addition, we improve the segmentation performance by using focal loss to put more weights on mis-classified examples. Experimental results show that our method achieves high accuracy on pixel-wise label prediction. The feasibility of our method for uncertainty measurement is also demonstrated with excellent correspondence between uncertain regions within OCT images and heterogeneous regions within corresponding histology images.