Collection:

We propose an unsupervised superpixel segmentation method by optimizing a randomly-initialized convolutional neural network (CNN) in inference time. Our method generates superpixels via CNN from a single image without any labels by minimizing a proposed o
- IEEE MemberUS $11.00
- Society MemberUS $0.00
- IEEE Student MemberUS $11.00
- Non-IEEE MemberUS $15.00
Videos in this product
Superpixel Segmentation Via Convolutional Neural Networks With Regularized Information Maximization
We propose an unsupervised superpixel segmentation method by optimizing a randomly-initialized convolutional neural network (CNN) in inference time. Our method generates superpixels via CNN from a single image without any labels by minimizing a proposed o
Superpixel Segmentation Via Convolutional Neural Networks With Regularized Information Maximization
We propose an unsupervised superpixel segmentation method by optimizing a randomly-initialized convolutional neural network (CNN) in inference time. Our method generates superpixels via CNN from a single image without any labels by minimizing a proposed o