Collection:
Analysis of structural and functional connectivity of brain has become a fundamental approach in neuroscientific research. Despite several studies reporting consistent similarities as well as differences for structural and resting state (rs) functional connectomes, a comparative investigation of connectomic consistency between the two modalities is still lacking. Nonetheless, connectomic analysis comprising both connectivity types necessitate extra attention as consistency of connectivity differs across modalities, possibly affecting the interpretation of the results. In this study, we present a comprehensive analysis of consistency in structural and rs-functional connectomes obtained from longitudinal diffusion MRI and rs-fMRI data of a single healthy subject. We contrast consistency of deterministic and probabilistic tracking with that of full, positive, and negative functional connectivities across various connectome generation schemes, using correlation as a measure of consistency.
- IEEE MemberUS $11.00
- Society MemberUS $0.00
- IEEE Student MemberUS $11.00
- Non-IEEE MemberUS $15.00
Videos in this product
Analysis of Consistency in Structural and Functional Connectivity of Human Brain
Analysis of structural and functional connectivity of brain has become a fundamental approach in neuroscientific research. Despite several studies reporting consistent similarities as well as differences for structural and resting state (rs) functional connectomes, a comparative investigation of connectomic consistency between the two modalities is still lacking. Nonetheless, connectomic analysis comprising both connectivity types necessitate extra attention as consistency of connectivity differs across modalities, possibly affecting the interpretation of the results. In this study, we present a comprehensive analysis of consistency in structural and rs-functional connectomes obtained from longitudinal diffusion MRI and rs-fMRI data of a single healthy subject. We contrast consistency of deterministic and probabilistic tracking with that of full, positive, and negative functional connectivities across various connectome generation schemes, using correlation as a measure of consistency.