IEEE Magnetics 2014 Distinguished Lectures - Tim St Pierre

1022 views
Download
  • Share
Create Account or Sign In to post comments
#magnetism #IEEE Magnetics #magnetics #distinguished lectures #distinguished lecturers

Scientists working in the field of magnetic materials are increasingly focusing their attention on new applications of magnetic detection and magnetic transduction techniques in the biomedical sciences. Iron is a key functional element in the human body and surpasses all other naturally occurring elements in the body in terms of both the variety and magnitudes of its magnetic states. In many diseases, the quantity and the magnetic state of iron are altered by the disease. Hence, detecting and measuring the magnetic properties of the iron in vivo or in samples of body fluids can give insights into the state of health of a human subject. Example applications include assessing the risk of organ damage in hereditary hemochromatosis [1], determining the dose of iron chelator drugs required for patients with thalassemia [2], and identifying infectious forms of the malarial parasite in finger-prick blood samples [3]. Scientists are also working on the development of synthetic magnetic particles that can be injected into the human body for the diagnosis and treatment of disease. The particles used are generally in the size range of 10 to 100 nm. They can be used to enhance the contrast in magnetic resonance images to help identify tumors in tissue [4], to act as local heat sources to treat cancer [5], and to carry, concentrate, and release drugs more specifically than drugs without a magnetic carrier [6]. In this presentation, the physical and chemical principles behind these biomedical applications and their impact on medicine will presented at a level suitable for a generalist audience.

Video of Tim St Pierre's IEEE Magnetics distinguished lecture

Advertisment

Advertisment