Silicon devices are dominating power electronics due to their excellent starting material quality, streamlined fabrication, low-cost volume production, proven reliability and ruggedness, and design/circuit legacy. Although Si power devices continue to make progress, they are approaching their operational limits primarily due to their relatively low bandgap and critical electric field that result in high conduction and switching losses, and poor high temperature performance. SiC power devices offer compelling system benefits including high efficiency, high voltage/temperature operation, and low weight and volume. In particular, SiC is key in addressing environmental concerns and is gaining significant market share boosted by volume insertion in electric vehicles. This keynote will explore remaining barriers to SiC commercialization including higher than silicon device cost, reliability and ruggedness concerns, and the need for a trained workforce to skillfully insert SiC into power electronics systems. Fab models and the vibrant SiC manufacturing infrastructure, which mirrors that of Si, will be presented in terms of the rapid expansion to meet demand. Finally, the co-existence of Si, SiC, and GaN will be discussed, and their respective competitive advantages highlighted.